MAGNITUDES Y MEDIDA
El gran físico inglés Kelvin consideraba que solamente puede aceptarse como satisfactorio nuestro conocimiento si somos capaces de expresarlo mediante números. Aun cuando la afirmación de Kelvin tomada al pie de la letra supondría la descalificación de valiosas formas de conocimiento,destaca la importancia del conocimiento cuantitativo. La operación que permite expresar una propiedad o atributo físico en forma numérica es precisamente la medida.
Magnitud, cantidad y unidad
La noción de magnitud está inevitablemente relacionada con la de medida. Se denominan magnitudes a ciertas propiedades o aspectos observables de un sistema físico que pueden ser expresados en forma numérica. En otros términos, las magnitudes son propiedades o atributos medibles.
La longitud, la masa, el volumen, la fuerza, la velocidad,la cantidad de sustancia son ejemplos de magnitudes físicas. La belleza, sin embargo, no es una magnitud, entre otras razones porque no es posible elaborar una escala y mucho menos un aparato que permita determinar cuántas veces una persona o un objeto es más bello que otro. La sinceridad o la amabilidad tampoco lo son. Se trata de aspectos cualitativos porque indican cualidad y no cantidad.
En el lenguaje de la física la noción de cantidad se refiere al valor que toma una magnitud dada en un cuerpo o sistema concreto; la longitud de esta mesa, la masa de aquella moneda,el volumen de ese lapicero, son ejemplos de cantidades. Una cantidad de referencia se denomina unidad y el sistema físico que encarna la cantidad considerada como una unidad se denomina patrón.
SISTEMAS DE UNIDADES
En las ciencias físicas tanto las leyes como las definiciones relacionan matemáticamente entre sí grupos, por lo general amplios, de magnitudes. Por ello es posible seleccionar un conjunto reducido pero completo de ellas de tal modo que cualquier otra magnitud pueda ser expresada en función de dicho conjunto. Esas pocas magnitudes relacionadas se denominan magnitudes fundamentales, mientras que el resto que pueden expresarse en función de las fundamentales reciben el nombre de magnitudes derivadas.
Cuando se ha elegido ese conjunto reducido y completo de magnitudes fundamentales y se han definido correctamente sus unidades correspondientes, se dispone entonces de un sistema de unidades. La definición de unidades dentro de un sistema se atiene a diferentes criterios. Así la unidad ha de ser constante como corresponde a su función de cantidad de referencia equivalente para las diferentes mediciones,pero también ha de ser reproducible con relativa facilidad en un laboratorio.
Así, por ejemplo, la definición de amperio como unidad de intensidad de corriente ha evolucionado sobre la base de este criterio. Debido a que las fuerzas se saben medir con bastante precisión y facilidad, en la actualidad se define el amperio a partir de un fenómeno electromagnético en el que aparecen fuerzas entre conductores cuya magnitud depende de la intensidad de corriente.
El Sistema Internacional de Unidades (SI)
Las condiciones de definición de un sistema de unidades permitiría el establecimiento de una considerable variedad de ellos. Así, es posible elegir conjuntos de magnitudes fundamentales diferentes o incluso, aun aceptando el mismo conjunto, elegir y definir unidades distintas de un sistema a otro. Desde un punto de vista formal, cada científico o cada país podría operar con su propio sistema de unidades,sin embargo, y aunque en el pasado tal situación se ha dado con cierta frecuencia (recuérdense los países anglosajones con sus millas, pies, libras, grados Fahrenheit, etc.), existe una tendencia generalizada a adoptar un mismo sistema de unidades con el fin de facilitar la cooperación y comunicación en el terreno científico y técnico.
MAGNITUD BASE | NOMBRE | SIMBOLO |
longitud masa tiempo corriente eléctrica temperatura termodinámica cantidad de sustancia intensidad luminosa | metro kilogramo segundo Ampere Kelvin mol candela | m kg s A K mol cd |
Unidades derivadas
Ciertas unidades derivadas han recibido unos nombres y símbolos especiales. Estas unidades pueden así mismo ser utilizadas en combinación con otras unidades base o derivadas para expresar unidades de otras cantidades. Estos nombre y símbolos especiales son una forma de expresar unidades de uso frecuente.
coulomb (C): Cantidad de electricidad transportada en un segundo por una corriente de un amperio.
joule (J): Trabajo producido por una fuerza de un newton cuando su punto de aplicación se desplaza la distancia de un metro en la dirección de la fuerza.
newton (N): Es la fuerza que, aplicada a un cuerpo que tiene una masa de 1 kilogramo, le comunica una aceleración de 1 metro por segundo, cada segundo.
pascal (Pa): Unidad de presión. Es la presión uniforme que,actuando sobre una superficie plana de 1 metro cuadrado, ejerce perpendicularmente a esta superficie una fuerza total de 1 newton.
volt (V): Unidad de tensión eléctrica, potencial eléctrico,fuerza electromotriz. Es la diferencia de potencial eléctrico que existe entre dos puntos de un hilo conductor que transporta una corriente de intensidad constante de 1 ampere cuando la potencia disipada entre esos puntos es igual a 1 watt.
watt (W): Potencia que da lugar a una producción de energía igual a 1 joule por segundo.
ohm (Ω): Unidad de resistencia eléctrica. Es la resistencia eléctrica que existe entre dos puntos de un conductor cuando una diferencia de potencial constante de 1 volt aplicada entre estos dos puntos produce, en dicho conductor, una corriente de intensidad 1 ampere, cuando no haya fuerza electromotriz en el conductor.
weber (Wb): Unidad de flujo magnético, flujo de inducción magnética. Es el flujo magnético que, al atravesar un circuito de una sola espira produce en la misma una fuerza electromotriz de 1 volt si se anula dicho flujo en 1 segundo por decrecimiento uniforme.